A RhII−**AuII Bimetallic Core with a Direct Metal**−**Metal Bond**

Arthur J. Esswein, Jillian L. Dempsey, and Daniel G. Nocera*

*Department of Chemistry, Massachusetts Institute of Technology, Building 6, Room 335, 77 Massachusetts A*V*enue, Cambridge, Massachusetts 02139-4307*

Received November 19, 2006

The d⁸···d¹⁰ heterobimetallic Rh^IAu'(tfepma)₂(CN'Bu)₂Cl₂ (1) com-
plox (fforma — bis[bis(trifluorootbox))phosphipolmothylomino) is plex (tfepma $=$ bis[bis(trifluoroethoxy)phosphino]methylamine) is oxidized by KAu^{III}Cl₄ to give the first structurally characterized d⁷− dº Rh"–Au" singly bonded metal complex [Rh"Au"(tfepma)₂(CN'Bu)₂-Cl₃]⁺[Au^ICl₂]⁻ (2). Complex 2 undergoes a thermal intermetal redox reaction to generate *fac*-Rh^{ill}(tfepma)(CN^tBu)Cl₃ (3) and Au₂^{1,}(tfepma)₂- Cl_2 (4).

Bimetallic Rh complexes bridged by three dfpma ligands [dfpma = $CH_3N(PF_2)_2$] are photocatalysts for hydrogen production from homogeneous HX solutions.¹ Reactivity studies suggest that 2 equiv of HX add to a $Rh_2^{0,0}$ center to generate a dihydridodihalo $Rh_2^{\Pi,\Pi}(H)_2(X)_2$ complex from which H_2 is photoeliminated.² The Rh^{II}-X bond of the resulting dihalide $Rh_2^{0,\text{II}}(X)_2$ photoproduct may be activated by excitation into the $d\sigma \rightarrow d\sigma^*$ absorption manifold³ of the bimetallic core to give back the $Rh_2^{0,0}$ center, thus closing the photocycle.^{4,5} Rh^{II}-X bond activation is the overall determinant of the photocycle efficiency and consequently the efficiency of H_2 production.² One way to increase the photocycle efficiency is to increase the photochemical quantum yield for M-X bond activation. Gold halide complexes are light-sensitive and thus are attractive targets for photochemical studies.⁶ To this end, we have begun to develop a chemistry of heterobimetallic RhAu complexes with the objective of managing H_2 at the Rh end and X_2 at Au end of the bimetallic core. The majority of RhAu heterobimetallics to date have employed either dppm [bis- (diphenylphosphino)methane] or dcpm [bis(dicyclohexylphosphino)methane] as bridging ligands. Of pertinence to the chemistry reported here, $Rh^{I}Au^{I}(dppm)_{2}(CN^{t}Bu)_{2}Cl_{2}$ was

* To whom correspondence should be addressed. E-mail: nocera@mit.edu.

- (1) Heyduk, A. F.; Nocera, D. G. *Science* **²⁰⁰¹**, *²⁹³*, 1639-1641.
- (2) Esswein, A. J.; Veige, A. S.; Nocera, D. G. *J. Am. Chem. Soc.* **2005**, *¹²⁷*, 16641-16651.
- (3) Kadis, J.; Shin, Y.-g. K.; Ward, D. L.; Nocera, D. G. *Inorg. Chem.* **¹⁹⁹⁶**, *³⁵*, 811-817.
- (4) Heyduk, A. F.; Macintosh, A. M.; Nocera, D. G. *J. Am. Chem. Soc.*
- **¹⁹⁹⁹**, *¹²¹*, 5023-5032. (5) Odom, A. L.; Heyduk, A. F.; Nocera, D. G. *Inorg. Chim. Acta* **2000**, *²⁹⁷*, 330-337.
- (6) See: Fackler, J. P., Jr. *Inorg. Chem.* **²⁰⁰²**, *⁴¹*, 6959-6972.

first synthesized by Langrick and Shaw⁷ and recently characterized by X-ray crystallography.8 Though the compound has been the subject of spectroscopic investigations, $9-11$ the reaction chemistry of $Rh^{I...}Au^{I}$ and more generally $d^{8...}$
 d^{10} cores has been underdeveloped. We now report the \cdot ¹⁰ cores has been underdeveloped. We now report the synthesis, characterization, and redox chemistry of a Rh^I·· \cdot Au^I complex to generate a two-electron oxidized $Rh^{II}-Au^{II}$
complex, which contains a formal metal-metal bond complex, which contains a formal metal-metal bond.

 $Rh^{I}Au^{I}$ (tfepma)₂(CN^tBu)₂Cl₂ (1) can be synthesized by the sequential addition of tfepma [tfepma = $CH_3N(P[OCH_2 CF₃$], *tert*-butylisonitrile, and $Au^I(th)Cl$ (tht = tetrahy-
drothiophene) to a concentrated solution of $[Rh^I(CON)Cl]$. drothiophene) to a concentrated solution of $[Rh^I(COD)Cl]_2$ in CH_2Cl_2 in 83% yield. The NMR spectrum of 1 in CD_3 -CN shows a sharp singlet at 1.45 ppm for the *tert*-butyl protons of the terminal isonitriles and a pseudotriplet at 2.98 ppm (${}^{3}J_{P-H}$ = 3.0 Hz) for the bridgehead N-methyl protons. ppm (${}^{3}J_{P-H}$ = 3.0 Hz) for the bridgehead *N*-methyl protons.
 ${}^{31}P\{{}^{1}H\}$ NMR shows two multiplets at 136.9 and 151.3 ppm. Single crystals of 1 may be obtained from CH_2Cl_2 solutions of the complex layered with $Et₂O$. The solution of the X-ray crystal structure is shown in Figure 1 (left). The ligand geometries about the Rh and Au centers are in accordance with that expected for their respective d electron counts. The Rh^I center is approximately square-planar, and the Au^I center is trigonally distorted as defined by $P(1)-Au(1)-P(2)$ and P(1)-Au(1)-Cl(1) angles of $151.41(3)^\circ$ and $101.39(3)^\circ$, respectively. The chloride counterions show close metal contacts of $d[Au(1)\cdots Cl(1)] = 2.6632(9)$ Å and $d[Rh(1)\cdots Cl-1]$ (2)] = 2.6027(9) Å. The Rh(1) \cdots Au(1) distance is 2.8181-(3) Å. The structural motif of **1** is similar to that of other $d^{8} \cdot \cdot d^{10}$ M $\cdot \cdot \cdot$ Au^I dimers (M = Rh¹,⁸ Ir^I,¹² Ni^{II},¹³ Pt^{II} ¹⁴) when dppm and dcpm bridging ligands are used, except that the

- (7) Langrick, C. R.; Shaw, B. L. *J. Chem. Soc., Dalton Trans.* **¹⁹⁸⁵**, 511- 516.
- (8) Dempsey, J. L.; Esswein, A. J.; Manke, D. R.; Rosenthal, J.; Soper, J. D.; Nocera, D. G. *Inorg. Chem.* **²⁰⁰⁵**, *⁴⁴*, 6879-6892.
- (9) Striplin, D. R.; Crosby, G. A. *J. Phys. Chem.* **¹⁹⁹⁵**, *⁹⁹*, 7977-7984.
- (10) Striplin, D. R.; Crosby, G. A. *J. Phys. Chem.* **¹⁹⁹⁵**, *⁹⁹*, 11041-11045.
- (11) Yip, H.-K.; Lin, H.-M.; Wang, Y.; Che, C.-M. *Inorg. Chem.* **1993**,
- 32, 3402-3407.

(12) For crystallographically characterized Ir^L····Au^I complexes, see: (a)

Balch, A. L.: Catalano, V. J.: Olmstead, M. M. *Inorg, Chem*, **1990** Balch, A. L.; Catalano, V. J.; Olmstead, M. M. *Inorg. Chem.* **1990**, *²⁹*, 585-586. (b) Balch, A. L.; Catalano, V. J. *Inorg. Chem.* **¹⁹⁹¹**,
- 30, 1302–1308.

(13) For a crystallographically characterized Ni^{II} \cdots Au^I complex, see: Kim,
 EXECUTE: Kubiak C. P.J. Organomet Chem **1988** 346 H. P.; Fanwick, P. E.; Kubiak, C. P. *J. Organomet. Chem.* **1988**, *346*, C39-C42.

Figure 1. Ellipsoid plots of **1** (left) and **2** (right). H atoms, noncoordinating counterions, and $-Me$ and $-CH₂CF₃$ groups are omitted for clarity. Data collected at 100 K with thermal ellipsoids drawn at the 50% probability level.

Scheme 1

closely associated chlorides dispose the Au^I center toward a trigonal geometry in lieu of the nearly linear geometry observed in other systems. $8,12-14$

The highest occupied molecular orbital (HOMO) of $d^8 \cdot \cdot d^{10}$ bimetallic centers, as is the case for the Rh^I $\cdot \cdot \cdot$ Au^I
complex is a highly destabilized and occupied do* orbital complex, is a highly destabilized and occupied d*σ** orbital arising from a $d_z^2 - d_z^2$ interaction.^{9–11,15} Notwithstanding,
oxidation of 1 with outer-sphere one-electron oxidants such oxidation of **1** with outer-sphere one-electron oxidants such as NO^{+} and R_3N^{+} gives intractable product mixtures. Similar results are obtained for $PhI⁺Cl₂$, which is an oxidant and chlorine delivery agent. Conversely, a prompt color change from orange to red is observed upon the addition of KAu^{III}- $Cl₄$ to $CH₃CN$ solutions of 1 at low temperature (Scheme 1). A UV-vis absorption spectrum of the reaction mixture confirms that the conversion proceeds smoothly. The diagnostic absorption bands of **1** at 380 and 421 nm, which are in line with those reported for a RhAu $d\sigma^* \rightarrow \text{CNR } \pi^*$ / RhAu p σ transition,¹¹ are replaced by two new absorption bands at 329 and 460 nm (Figure 2).

Oxidation product **2** may be isolated as a strawberry solid in 44% yield after removal of KCl and subsequent recrystallization from CH_2Cl_2 layered with pentane. The NMR signals of **2** are significantly shifted from those of **1**. A ¹ H NMR singlet for the equivalent *tert*-butyl protons is observed at 1.61 ppm and a pseudotriplet $(3J_{P-H} = 4.4 \text{ Hz})$ is observed
for the bridgehead N–Me groups at 3.05 ppm. The $-OCH_{\text{tot}}$ for the bridgehead N-Me groups at 3.05 ppm. The $-OCH₂$ - $CF₃$ protons appear as a series of complex multiplets at

Figure 2. UV-vis absorption spectra from 300 to 600 nm $(25 \text{ °C}, CH₃ -$ CN) for 1 ($-$) and immediately after the addition of 1.05 equiv of KAu^{III}- Cl_4 to generate 2 (- - -).

Figure 3. DFT calculation of the orbitals involved in the $d\sigma \rightarrow d\sigma^*$ transition of $Rh^{II}Au^{II}(HN[PH_2]_2)_2(CNH)_2Cl_2^{2+}$. Geometry optimization was initiated using coordinates obtained from the crystal structure of **2**. Oscillator strengths and transition energies were calculated by time-dependent DFT.

 \sim 4.65, 4.99, and 5.79 ppm. The ³¹P{¹H} NMR spectrum of **2** indicates a large structural deviation from **1** as the two distinct 31P NMR resonances of **1** at 136.9 and 151.3 ppm are lost and replaced by a complex set of overlapping multiplets centered at ∼98 ppm. Single-crystal X-ray diffraction studies of **2** unequivocally establish its identity as $[Rh^{II}Au^{II}(tfepma)₂(CN^tBu)₂Cl₃]⁺[Au^ICl₂]⁻ (Figure 1, right);$ the Rh^H center is pseudooctahedral, and the Au^{II} center is roughly square-planar. Metal-halide bonding interactions are reflected by $Rh(1) - Cl(3)$ and $Au(1) - Cl(1)$ distances of 2.3764(9) and 2.4267(8) Å, respectively. Additionally, the short $Rh(1)$ - $Au(1)$ distance of 2.6549(4) Å in 2 is indicative of a formal metal-metal bond, thus affording the first structural characterization of a Rh^{II}-Au^{II} interaction.¹⁶ A chloride ion is loosely associated at an apical position of the Au^{II} square plane at a contact distance of 2.8492(9) \AA . The cationic complex is charge-balanced by an outer-sphere $Au^{I}Cl_{2}^{-}$ counterion.

Density functional theory (DFT) calculations were initiated using the coordinates obtained from the crystal structure of **2** (see the Supporting Information, SI). H atom surrogates were used in place of $-Me$, $-Hu$, and $-OCH_2CF_3$ groups.
The agreement between calculated and observed structures The agreement between calculated and observed structures suggests that these simplifications are reasonable. Details of the computation are provided in the SI. Time-dependent DFT calculations identify an allowed singlet $d\sigma \rightarrow d\sigma^*$ transition between the HOMO-2 and lowest unoccupied molecular orbital, which is shown in Figure 3. This result is consistent with a d^7-d^9 electron count, which can also be described as

⁽¹⁴⁾ For crystallographically characterized $Pt^{II} \cdots Au^{I}$ complexes, see: (a) Manojlović-Muir, L.; Henderson, A. N.; Treurnicht, I.; Puddephatt, R. J. *Organometallics* **¹⁹⁸⁹**, *⁸*, 2055-2061. (b) Yip, H.-K.; Che, C.- M.; Peng, S.-M. *J. Chem. Soc., Chem. Commun.* **¹⁹⁹¹**, 1626-1628. (c) Yip, H.-K.; Lin, H.-M.; Wang, Y.; Che, C.-M. *J. Chem. Soc., Dalton Trans.* **¹⁹⁹³**, 2939-2944. (d) Xu, C.; Anderson, G. K.; Brammer, L.; Braddock-Wilking, J.; Rath, N. P. *Organometallics* **1996**, *¹⁵*, 3972-3979. (e) Xia, B.-H.; Zhang, H.-X.; Che, C.-M.; Leung, K.-H.; Phillips, D. L.; Zhu, N.; Zhou, Z.-Y. *J. Am. Chem. Soc.* **2003**,

^{125, 10362–10374.&}lt;br>(15) Also by analogy to homobimetallic $d^{8 \cdot \cdot \cdot}$ and d^{8} systems, see for example:
(a) Rice S F: Miskowski V M: Gray H B *Inore Chem* 1988 (a) Rice, S. F.; Miskowski, V. M.; Gray, H. B. *Inorg. Chem.* **1988**, *²⁷*, 4704-4708. (b) Roundhill, D. M.; Gray, H. B.; Che, C.-M. *Acc. Chem. Res.* **¹⁹⁸⁹**, *²²*, 55-61.

⁽¹⁶⁾ As determined from a search of the Cambridge Structural Database. No matches were obtained for direct Rh-Au linkages in these formal oxidation states.

Figure 4. Ellipsoid plots of the cocrystallized products **3** (left) and **4** (right) when solutions of 2 were left to stand at room temperature in CH₃CN. H atoms and $-Me$ and $-CH₂CF₃$ groups are omitted for clarity. Data collected at 100 K with thermal ellipsoids drawn at the 50% probability level.

 $(d⁶)d¹ - (d⁸)d¹$, where the odd electron on each of the individual metal centers resides in a d 2 orbital ⁴ individual metal centers resides in a d_z ² orbital.⁴

Butyronitrile glasses (77 K) of **1** display a weak emission band at 565 nm and a strong band at 707 nm ($\lambda_{\rm exc} = 420$ nm), with lifetimes of ≤ 10 ns and 20 μ s indicating an excited-state parentage that is singlet and triplet, respectively,^{9,10} or indicating intermolecular association (for the short-lifetime component) of a bimetallic containing Au.¹⁷ Complex **2** is also emissive at 77 K and displays two bands at 529 and 733 nm. As in **1**, the red band is assigned as phosphorescence based on the observed lifetime of 30 *µ*s. The low-energy phosphorescence is consistent with emission from d*σ** excited states, as is observed for bimetallic Rh cores.3 The lifetime of the emissive state centered at 529 nm was ≤ 10 ns.

At ambient temperatures, complex **2** is unstable in solution and thermally reacts in CH_3CN or CH_2Cl_2 over the course of several hours. The complex multiplet centered at ∼98 ppm in the 31P{¹ H} NMR spectrum of **2** disappears with the concomitant appearance of a singlet resonance at 134.4 ppm and a sharp doublet at 75.5 ppm with a $^{1}J_{\text{Rh-P}}$ coupling constant of 141.9 Hz, in a 1:1 ratio. Although the ¹H NMR spectrum contains multiple overlapping N-Me resonances, a 'BuNC resonance appears at 1.56 ppm, consistent with the formation of Au^I(CN^tBu)Cl.¹⁸

Direct evidence for cleavage of the heterobimetallic $Rh^{II} Au^{II}$ bond is provided by single crystals obtained from $CH₂$ - $Cl₂/pentane$ layers of reacted solutions. X-ray structural analysis showed the asymmetric unit to contain $fac-Rh^{III}(t$ fepma)($CN^tBu)Cl₃$ (3) and $Au₂^{I,I}(tfepma)₂Cl₂$ (4) (Figure 4), tentatively assigned as the resonances at 75.5 and 134.4 ppm, respectively, in the ${}^{31}P{^1H}$ NMR. The structure of 3 comprises a pseudooctahedral Rh^{III} center ligated by three chloride ligands in a facial geometry with ∼90° cis angles and typical Rh-Cl bond lengths of $2.37-2.41$ A. A single CN ^tBu ligand is coordinated trans to $Cl(1)$ with a linear Cl- $(1)-Rh(1)-C(10)$ angle of 174.00 (18) °. The largest deviation from an ideal octahedral geometry is the tight $P(1)$ - $Rh(1)-P(2)$ bite angle of 70.94(6)° that is imposed by the

chelating tfepma ligand. The overall structural motif is analogous to that observed in *fac*-Rh^{III}(dppm)(CH₃CN)Cl₃.¹⁹ Complex **4** sits on a special position in the crystal lattice, and the bimetallic core is bisected by a crystallographic inversion center. The coordination geometry about the Au center in **⁴** is analogous to that of **¹** with similar Au-^P distances of 2.2973(18) and 2.2878(17) A; the Au(1) \cdots Cl-(4) contact is long at 2.6364(16) Å. The distorted trigonal geometry is defined by $P(3)$ -Au(1)- $P(4)$ and $P(3)$ -Au(1)-Cl(4) angles of $159.40(6)^\circ$ and $98.00(6)^\circ$, respectively. The tfepma ligand engenders an $Au(1)\cdots Au(1)$ distance of 2.8390(5) Å. This intermetal distance is shorter by about \sim 0.1 Å with respect to Au dimers of similar formulations with bridging dppm or dcpm ligands. $20,21$

The thermal reaction of **2** to yield **3** and **4** indicates that the $Rh^{II}-Au^{II}$ metal-metal-bonded core is eradicated by intermetal charge transfer and disproportionation by the overall stoichiometry: $2 \rightarrow 3 + \frac{1}{2}4 + \text{Au}^T(\text{CN}^T\text{Bu})$ Cl. It is
not unreasonable, on the basis of electronegativity differnot unreasonable, on the basis of electronegativity differences, to invoke a bonding interaction between the $d^7 Rh$ ^{II} and d^9 Au^{II} centers that is highly polarized toward Au; in this instance, a $d^6 \leftarrow d^{10}$ electron count for a Rh^{III} \leftarrow Au^I interaction is the limiting oxidation state formalism. If this electronic contribution was significant, then the high-valent Rh^{III} center would be expected to expel neutral π -acceptor ligands in lieu of anionic π -donor ligands such as Cl⁻. In light of this possibility, further investigations on the twoelectron redox chemistry of $d^{8 \cdot \cdot \cdot}d^{10}$ cores may be facilitated
by replacing the group 9 metal center with one from group by replacing the group 9 metal center with one from group 10.14,22,23 The d orbital energies for Pt and Au metal fragments are expected to be better matched, leading to more covalent M-M interactions, which could aid in the stabilization of the $Pt^{III}-Au^{II}$ -bonded d^7-d^9 core and avoid the disproportionation chemistry observed for $Bh^{II}-Au^{II}$ cores disproportionation chemistry observed for Rh^H-Au^H cores. The elaboration of such compounds is currently under investigation.

Acknowledgment. This research was supported by grants from the NSF (Grant CHE-0132680). J.L.D. acknowledges support from the UROP office at Massachusetts Institute of Technology (MIT). Grants from the NSF also provided instrument support to the DCIF at MIT (Grants CHE-9808061 and DBI-9729592) and for X-ray diffraction facilities under the auspices of a MRSEC Program (Grant DMR 02-13282).

Supporting Information Available: Computational, crystallographic (CIF), and full experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

IC062203F

- (22) Cooper, G. R.; Hutton, A. T.; Langrick, C. R.; McEwan, D. M.; Pringle, P. G.; Shaw, B. L. *J. Chem. Soc., Dalton Trans.* **¹⁹⁸⁴**, 855-862.
- (23) Hassan, F. S. M.; Markham, D. P.; Pringle, P. G.; Shaw, B. L. *J. Chem. Soc., Dalton Trans.* **¹⁹⁸⁵**, 279-283.

⁽¹⁷⁾ For example, see: van Zyl, W. E.; Lopez-de-Luzuriaga, J. M.; Mohamed, A. A.; Staples, R. J.; Fackler, J. P., Jr. *Inorg. Chem.* **2002**, *⁴¹*, 4579-4589.

⁽¹⁸⁾ Liau, R.-L.; Mathieson, T.; Schier, A.; Berger, R. J. F.; Runeberg, N.; Schmidbaur, H. *Z. Naturforsch. B* **²⁰⁰²**, *⁵⁷*, 881-889.

⁽¹⁹⁾ Cotton, F. A.; Dunbar, K. R.; Eagle, C. T.; Falvello, L. R.; Kang, S.-J.; Price, A. C.; Verbruggen, M. G. *Inorg. Chim. Acta* **1991**, *184*,

³⁵-42. (20) Schmidbaur, H.; Wohlleben, A.; Schubert, U.; Frank, A.; Huttner, G. *Chem. Ber.* **¹⁹⁷⁷**, *¹¹⁰*, 2751-2757.

⁽²¹⁾ Fu, W.-F.; Chan, K.-C.; Cheung, K.-K.; Che, C.-M. *Chem. Eur. J.* **²⁰⁰¹**, *⁷*, 4656-4664.