Inorganic Chemistry

A Rh^{II}–Au^{II} Bimetallic Core with a Direct Metal–Metal Bond

Arthur J. Esswein, Jillian L. Dempsey, and Daniel G. Nocera*

Department of Chemistry, Massachusetts Institute of Technology, Building 6, Room 335, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307

Received November 19, 2006

The d⁸···d¹⁰ heterobimetallic Rh^IAu^I(tfepma)₂(CN^IBu)₂Cl₂ (1) complex (tfepma = bis[bis(trifluoroethoxy)phosphino]methylamine) is oxidized by KAu^{III}Cl₄ to give the first structurally characterized d⁷– d⁹ Rh^{II}–Au^{II} singly bonded metal complex [Rh^{II}Au^{II}(tfepma)₂(CN^IBu)₂-Cl₃]⁺[Au^ICl₂]⁻ (2). Complex 2 undergoes a thermal intermetal redox reaction to generate *fac*-Rh^{III}(tfepma)(CN^IBu)Cl₃ (3) and Au₂^{I,I}(tfepma)₂-Cl₂ (4).

Bimetallic Rh complexes bridged by three dfpma ligands $[dfpma = CH_3N(PF_2)_2]$ are photocatalysts for hydrogen production from homogeneous HX solutions.¹ Reactivity studies suggest that 2 equiv of HX add to a Rh2^{0,0} center to generate a dihydridodihalo Rh2II,II(H)2(X)2 complex from which H₂ is photoeliminated.² The Rh^{II}-X bond of the resulting dihalide Rh2^{0,II}(X)₂ photoproduct may be activated by excitation into the $d\sigma \rightarrow d\sigma^*$ absorption manifold³ of the bimetallic core to give back the Rh₂^{0,0} center, thus closing the photocycle.4,5 RhII-X bond activation is the overall determinant of the photocycle efficiency and consequently the efficiency of H₂ production.² One way to increase the photocycle efficiency is to increase the photochemical quantum yield for M-X bond activation. Gold halide complexes are light-sensitive and thus are attractive targets for photochemical studies.⁶ To this end, we have begun to develop a chemistry of heterobimetallic RhAu complexes with the objective of managing H_2 at the Rh end and X_2 at Au end of the bimetallic core. The majority of RhAu heterobimetallics to date have employed either dppm [bis-(diphenylphosphino)methane] or dcpm [bis(dicyclohexylphosphino)methane] as bridging ligands. Of pertinence to the chemistry reported here, Rh^IAu^I(dppm)₂(CN^tBu)₂Cl₂ was

- * To whom correspondence should be addressed. E-mail: nocera@mit.edu. (1) Heyduk, A. F.; Nocera, D. G. *Science* **2001**, *293*, 1639–1641.
- (1) Heyduk, A. I., Nocera, D. G. Science 2001, 295, 1059 (1041). (2) Esswein, A. J.; Veige, A. S.; Nocera, D. G. J. Am. Chem. Soc. 2005,
- 127, 16641-16651.
- (3) Kadis, J.; Shin, Y.-g. K.; Ward, D. L.; Nocera, D. G. Inorg. Chem. 1996, 35, 811–817.
- (4) Heyduk, A. F.; Macintosh, A. M.; Nocera, D. G. J. Am. Chem. Soc. 1999, 121, 5023-5032.
- (5) Odom, A. L.; Heyduk, A. F.; Nocera, D. G. Inorg. Chim. Acta 2000, 297, 330–337.
- (6) See: Fackler, J. P., Jr. Inorg. Chem. 2002, 41, 6959-6972.

2362 Inorganic Chemistry, Vol. 46, No. 7, 2007

first synthesized by Langrick and Shaw⁷ and recently characterized by X-ray crystallography.⁸ Though the compound has been the subject of spectroscopic investigations,^{9–11} the reaction chemistry of Rh^I···Au^I and more generally d⁸· ··d¹⁰ cores has been underdeveloped. We now report the synthesis, characterization, and redox chemistry of a Rh^I·· ·Au^I complex to generate a two-electron oxidized Rh^{II}–Au^{II} complex, which contains a formal metal–metal bond.

 $Rh^{I}Au^{I}(tfepma)_{2}(CN^{t}Bu)_{2}Cl_{2}$ (1) can be synthesized by the sequential addition of tfepma [tfepma = $CH_3N(P[OCH_2 CF_3]_2$, tert-butylisonitrile, and Au^I(tht)Cl (tht = tetrahydrothiophene) to a concentrated solution of [Rh^I(COD)Cl]₂ in CH₂Cl₂ in 83% yield. The NMR spectrum of **1** in CD₃-CN shows a sharp singlet at 1.45 ppm for the *tert*-butyl protons of the terminal isonitriles and a pseudotriplet at 2.98 ppm (${}^{3}J_{P-H} = 3.0 \text{ Hz}$) for the bridgehead *N*-methyl protons. ³¹P{¹H} NMR shows two multiplets at 136.9 and 151.3 ppm. Single crystals of 1 may be obtained from CH₂Cl₂ solutions of the complex layered with Et₂O. The solution of the X-ray crystal structure is shown in Figure 1 (left). The ligand geometries about the Rh and Au centers are in accordance with that expected for their respective d electron counts. The Rh^I center is approximately square-planar, and the Au^I center is trigonally distorted as defined by P(1)-Au(1)-P(2) and P(1)-Au(1)-Cl(1) angles of $151.41(3)^{\circ}$ and $101.39(3)^{\circ}$, respectively. The chloride counterions show close metal contacts of $d[Au(1)\cdots Cl(1)] = 2.6632(9)$ Å and $d[Rh(1)\cdots Cl-$ (2)] = 2.6027(9) Å. The Rh(1)····Au(1) distance is 2.8181-(3) Å. The structural motif of 1 is similar to that of other $d^{8} \cdots d^{10} \operatorname{M} \cdots \operatorname{Au^{I}} \operatorname{dimers} (M = \operatorname{Rh^{I}}_{, 8} \operatorname{Irr}_{, 12}^{I} \operatorname{Ni^{II}}_{, 13} \operatorname{Pt^{II}}_{, 14})$ when dppm and dcpm bridging ligands are used, except that the

- (7) Langrick, C. R.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1985, 511– 516.
- (8) Dempsey, J. L.; Esswein, A. J.; Manke, D. R.; Rosenthal, J.; Soper, J. D.; Nocera, D. G. *Inorg. Chem.* 2005, 44, 6879–6892.
- (9) Striplin, D. R.; Crosby, G. A. J. Phys. Chem. 1995, 99, 7977-7984.
- (10) Striplin, D. R.; Crosby, G. A. J. Phys. Chem. 1995, 99, 11041-11045.
- (11) Yip, H.-K.; Lin, H.-M.; Wang, Y.; Che, C.-M. Inorg. Chem. 1993, 32, 3402–3407.
- (12) For crystallographically characterized Ir^I···Au^I complexes, see: (a) Balch, A. L.; Catalano, V. J.; Olmstead, M. M. *Inorg. Chem.* 1990, 29, 585–586. (b) Balch, A. L.; Catalano, V. J. *Inorg. Chem.* 1991, 30, 1302–1308.
- (13) For a crystallographically characterized Ni^{II}...Au^I complex, see: Kim, H. P.; Fanwick, P. E.; Kubiak, C. P. J. Organomet. Chem. **1988**, 346, C39-C42.

Figure 1. Ellipsoid plots of **1** (left) and **2** (right). H atoms, noncoordinating counterions, and -Me and $-CH_2CF_3$ groups are omitted for clarity. Data collected at 100 K with thermal ellipsoids drawn at the 50% probability level.

Scheme 1

closely associated chlorides dispose the Au^I center toward a trigonal geometry in lieu of the nearly linear geometry observed in other systems.^{8,12–14}

The highest occupied molecular orbital (HOMO) of d^{8} ... d^{10} bimetallic centers, as is the case for the Rh^I...Au^I complex, is a highly destabilized and occupied $d\sigma^*$ orbital arising from a $d_{z^2}-d_{z^2}$ interaction.^{9-11,15} Notwithstanding, oxidation of 1 with outer-sphere one-electron oxidants such as NO⁺ and R₃N^{•+} gives intractable product mixtures. Similar results are obtained for PhI·Cl₂, which is an oxidant and chlorine delivery agent. Conversely, a prompt color change from orange to red is observed upon the addition of KAu^{III}-Cl₄ to CH₃CN solutions of **1** at low temperature (Scheme 1). A UV-vis absorption spectrum of the reaction mixture confirms that the conversion proceeds smoothly. The diagnostic absorption bands of 1 at 380 and 421 nm, which are in line with those reported for a RhAu d $\sigma^* \rightarrow \text{CNR} \pi^*/$ RhAu p σ transition,¹¹ are replaced by two new absorption bands at 329 and 460 nm (Figure 2).

Oxidation product **2** may be isolated as a strawberry solid in 44% yield after removal of KCl and subsequent recrystallization from CH₂Cl₂ layered with pentane. The NMR signals of **2** are significantly shifted from those of **1**. A ¹H NMR singlet for the equivalent *tert*-butyl protons is observed at 1.61 ppm and a pseudotriplet (${}^{3}J_{P-H} = 4.4 \text{ Hz}$) is observed for the bridgehead N–Me groups at 3.05 ppm. The –OCH₂-CF₃ protons appear as a series of complex multiplets at

Figure 2. UV-vis absorption spectra from 300 to 600 nm (25 °C, CH₃-CN) for 1 (--) and immediately after the addition of 1.05 equiv of KAu^{III}-Cl₄ to generate 2 (- -).

Figure 3. DFT calculation of the orbitals involved in the $d\sigma \rightarrow d\sigma^*$ transition of Rh^{II}Au^{II}(HN[PH₂]₂)₂(CNH)₂Cl₂²⁺. Geometry optimization was initiated using coordinates obtained from the crystal structure of **2**. Oscillator strengths and transition energies were calculated by time-dependent DFT.

 \sim 4.65, 4.99, and 5.79 ppm. The ³¹P{¹H} NMR spectrum of 2 indicates a large structural deviation from 1 as the two distinct ³¹P NMR resonances of 1 at 136.9 and 151.3 ppm are lost and replaced by a complex set of overlapping multiplets centered at ~98 ppm. Single-crystal X-ray diffraction studies of 2 unequivocally establish its identity as [Rh^{II}Au^{II}(tfepma)₂(CN^tBu)₂Cl₃]⁺[Au^ICl₂]⁻ (Figure 1, right); the Rh^{II} center is pseudooctahedral, and the Au^{II} center is roughly square-planar. Metal-halide bonding interactions are reflected by Rh(1)-Cl(3) and Au(1)-Cl(1) distances of 2.3764(9) and 2.4267(8) Å, respectively. Additionally, the short Rh(1)-Au(1) distance of 2.6549(4) Å in 2 is indicative of a formal metal-metal bond, thus affording the first structural characterization of a Rh^{II}-Au^{II} interaction.¹⁶ A chloride ion is loosely associated at an apical position of the Au^{II} square plane at a contact distance of 2.8492(9) Å. The cationic complex is charge-balanced by an outer-sphere $Au^{I}Cl_{2}^{-}$ counterion.

Density functional theory (DFT) calculations were initiated using the coordinates obtained from the crystal structure of 2 (see the Supporting Information, SI). H atom surrogates were used in place of -Me, $-^tBu$, and $-OCH_2CF_3$ groups. The agreement between calculated and observed structures suggests that these simplifications are reasonable. Details of the computation are provided in the SI. Time-dependent DFT calculations identify an allowed singlet $d\sigma \rightarrow d\sigma^*$ transition between the HOMO-2 and lowest unoccupied molecular orbital, which is shown in Figure 3. This result is consistent with a d^7-d^9 electron count, which can also be described as

⁽¹⁴⁾ For crystallographically characterized Pt^{II}···Au^I complexes, see: (a) Manojlović-Muir, L.; Henderson, A. N.; Treurnicht, I.; Puddephatt, R. J. Organometallics 1989, 8, 2055–2061. (b) Yip, H.-K.; Che, C.-M.; Peng, S.-M. J. Chem. Soc., Chem. Commun. 1991, 1626–1628. (c) Yip, H.-K.; Lin, H.-M.; Wang, Y.; Che, C.-M. J. Chem. Soc., Dalton Trans. 1993, 2939–2944. (d) Xu, C.; Anderson, G. K.; Brammer, L.; Braddock-Wilking, J.; Rath, N. P. Organometallics 1996, 15, 3972–3979. (e) Xia, B.-H.; Zhang, H.-X.; Che, C.-M.; Leung, K.-H.; Phillips, D. L.; Zhu, N.; Zhou, Z.-Y. J. Am. Chem. Soc. 2003, 125, 10362–10374.

⁽¹⁵⁾ Also by analogy to homobimetallic d⁸...d⁸ systems, see for example:
(a) Rice, S. F.; Miskowski, V. M.; Gray, H. B. *Inorg. Chem.* 1988, 27, 4704–4708. (b) Roundhill, D. M.; Gray, H. B.; Che, C.-M. Acc. Chem. Res. 1989, 22, 55–61.

⁽¹⁶⁾ As determined from a search of the Cambridge Structural Database. No matches were obtained for direct Rh-Au linkages in these formal oxidation states.

Figure 4. Ellipsoid plots of the cocrystallized products **3** (left) and **4** (right) when solutions of **2** were left to stand at room temperature in CH₃CN. H atoms and -Me and $-CH_2CF_3$ groups are omitted for clarity. Data collected at 100 K with thermal ellipsoids drawn at the 50% probability level.

 $(d^6)d^1-(d^8)d^1$, where the odd electron on each of the individual metal centers resides in a d_{z^2} orbital.⁴

Butyronitrile glasses (77 K) of **1** display a weak emission band at 565 nm and a strong band at 707 nm ($\lambda_{exc} = 420$ nm), with lifetimes of <10 ns and 20 μ s indicating an excited-state parentage that is singlet and triplet, respectively,^{9,10} or indicating intermolecular association (for the short-lifetime component) of a bimetallic containing Au.¹⁷ Complex **2** is also emissive at 77 K and displays two bands at 529 and 733 nm. As in **1**, the red band is assigned as phosphorescence based on the observed lifetime of 30 μ s. The low-energy phosphorescence is consistent with emission from d σ^* excited states, as is observed for bimetallic Rh cores.³ The lifetime of the emissive state centered at 529 nm was <10 ns.

At ambient temperatures, complex **2** is unstable in solution and thermally reacts in CH₃CN or CH₂Cl₂ over the course of several hours. The complex multiplet centered at ~98 ppm in the ³¹P{¹H} NMR spectrum of **2** disappears with the concomitant appearance of a singlet resonance at 134.4 ppm and a sharp doublet at 75.5 ppm with a ¹J_{Rh-P} coupling constant of 141.9 Hz, in a 1:1 ratio. Although the ¹H NMR spectrum contains multiple overlapping N–Me resonances, a ¹BuNC resonance appears at 1.56 ppm, consistent with the formation of Au^I(CNⁱBu)Cl.¹⁸

Direct evidence for cleavage of the heterobimetallic Rh^{II}– Au^{II} bond is provided by single crystals obtained from CH₂-Cl₂/pentane layers of reacted solutions. X-ray structural analysis showed the asymmetric unit to contain *fac*-Rh^{III}(tfepma)(CN^IBu)Cl₃ (**3**) and Au₂^{I,I}(tfepma)₂Cl₂ (**4**) (Figure 4), tentatively assigned as the resonances at 75.5 and 134.4 ppm, respectively, in the ³¹P{¹H} NMR. The structure of **3** comprises a pseudooctahedral Rh^{III} center ligated by three chloride ligands in a facial geometry with ~90° cis angles and typical Rh–Cl bond lengths of 2.37–2.41 Å. A single CN^IBu ligand is coordinated trans to Cl(1) with a linear Cl-(1)–Rh(1)–C(10) angle of 174.00(18)°. The largest deviation from an ideal octahedral geometry is the tight P(1)– Rh(1)–P(2) bite angle of 70.94(6)° that is imposed by the chelating tfepma ligand. The overall structural motif is analogous to that observed in *fac*-Rh^{III}(dppm)(CH₃CN)Cl₃.¹⁹ Complex **4** sits on a special position in the crystal lattice, and the bimetallic core is bisected by a crystallographic inversion center. The coordination geometry about the Au center in **4** is analogous to that of **1** with similar Au–P distances of 2.2973(18) and 2.2878(17) Å; the Au(1)···Cl-(4) contact is long at 2.6364(16) Å. The distorted trigonal geometry is defined by P(3)–Au(1)–P(4) and P(3)–Au(1)– Cl(4) angles of 159.40(6)° and 98.00(6)°, respectively. The tfepma ligand engenders an Au(1)···Au(1A) distance of 2.8390(5) Å. This intermetal distance is shorter by about ~0.1 Å with respect to Au dimers of similar formulations with bridging dppm or dcpm ligands.^{20,21}

The thermal reaction of 2 to yield 3 and 4 indicates that the Rh^{II}-Au^{II} metal-metal-bonded core is eradicated by intermetal charge transfer and disproportionation by the overall stoichiometry: $2 \rightarrow 3 + \frac{1}{2}4 + Au^{I}(CN^{t}Bu)Cl$. It is not unreasonable, on the basis of electronegativity differences, to invoke a bonding interaction between the d⁷ Rh^{II} and d⁹ Au^{II} centers that is highly polarized toward Au; in this instance, a $d^6 \leftarrow d^{10}$ electron count for a Rh^{III} \leftarrow Au^I interaction is the limiting oxidation state formalism. If this electronic contribution was significant, then the high-valent Rh^{III} center would be expected to expel neutral π -acceptor ligands in lieu of anionic π -donor ligands such as Cl⁻. In light of this possibility, further investigations on the twoelectron redox chemistry of d⁸···d¹⁰ cores may be facilitated by replacing the group 9 metal center with one from group 10.14,22,23 The d orbital energies for Pt and Au metal fragments are expected to be better matched, leading to more covalent M-M interactions, which could aid in the stabilization of the Pt^{III} -Au^{II}-bonded d^7 - d^9 core and avoid the disproportionation chemistry observed for Rh^{II}-Au^{II} cores. The elaboration of such compounds is currently under investigation.

Acknowledgment. This research was supported by grants from the NSF (Grant CHE-0132680). J.L.D. acknowledges support from the UROP office at Massachusetts Institute of Technology (MIT). Grants from the NSF also provided instrument support to the DCIF at MIT (Grants CHE-9808061 and DBI-9729592) and for X-ray diffraction facilities under the auspices of a MRSEC Program (Grant DMR 02-13282).

Supporting Information Available: Computational, crystallographic (CIF), and full experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

IC062203F

- (19) Cotton, F. A.; Dunbar, K. R.; Eagle, C. T.; Falvello, L. R.; Kang, S.-J.; Price, A. C.; Verbruggen, M. G. *Inorg. Chim. Acta* **1991**, *184*, 35–42.
- (20) Schmidbaur, H.; Wohlleben, A.; Schubert, U.; Frank, A.; Huttner, G. *Chem. Ber.* 1977, 110, 2751–2757.
- (21) Fu, W.-F.; Chan, K.-C.; Cheung, K.-K.; Che, C.-M. Chem. Eur. J. 2001, 7, 4656–4664.
- (22) Cooper, G. R.; Hutton, A. T.; Langrick, C. R.; McEwan, D. M.; Pringle, P. G.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1984, 855–862.
- (23) Hassan, F. S. M.; Markham, D. P.; Pringle, P. G.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1985, 279–283.

⁽¹⁷⁾ For example, see: van Zyl, W. E.; Lopez-de-Luzuriaga, J. M.; Mohamed, A. A.; Staples, R. J.; Fackler, J. P., Jr. *Inorg. Chem.* 2002, 41, 4579–4589.

⁽¹⁸⁾ Liau, R.-L.; Mathieson, T.; Schier, A.; Berger, R. J. F.; Runeberg, N.; Schmidbaur, H. Z. Naturforsch. B 2002, 57, 881–889.